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THE SEMIGROUP STABILITY OF THE 
DIFFERENCE APPROXIMATIONS FOR 

INITIAL-BOUNDARY VALUE PROBLEMS 

LIXIN WU 

ABSTRACT. For semidiscrete approximations and one-step fully discretized ap- 
proximations of the initial-boundary value problem for linear hyperbolic equa- 
tions with diagonalizable coefficient matrices, we prove that the Kreiss condition 
is a sufficient condition for the semigroup stability (or 12 stability). Also, we 
show that the stability of a fully discretized approximation generated by a locally 
stable Runge-Kutta method is determined by the stability of the semidiscrete 
approximation. 

1. INTRODUCTION 

Consider the following first-order one-dimensional hyperbolic equations: 
O u O u (1) at = A- +Bu+F 

at x 

in the quarter-plane Q = {(x, t) I x, t > O}. Here, 

u(x, t) = (u(x, t), ..., U()(X, t)) 

and 
F= (F0)(X, t),... ,F(m)(x, t))T 

are vector functions, A and B are m x m constant matrices. In particular, A 
is assumed diagonal: 

with 
A, = diag(al, a2, ..., a), ai<O, i=1, ..., 1, 

A,, = diag(al+l, al+2, ..., am), ai > O, i = l + 1, ..., m. 
The solution is uniquely determined [5, 8] if we impose the initial condition 

(2) u(x, O) = f(x), x > O, 
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and the boundary condition 

(3) uI(O, t)=Suii(O, t)+g(t), t?>, 

where ui and uii are the partitions of u according to the partition of A, and 
S is an l x (m - l) matrix. 

A number of theories on the well-posedness of the initial-boundary value 
problem (1)-(3) have been developed [1, 5, 8, 10, 14]. However, they are not 
the focus of this paper and will not be addressed here. Instead, we assume the 
well-posedness of the above initial-boundary value problem (IBV for short) in 
the so-called semigroup sense. 

Assumption 1.1. The IBV problem (1)-(3) is well-posed if 

(1) for a dense set of smooth data there is a smooth solution; 
(2) the solution of the homogeneous equations (F = 0) with homogeneous 

boundary condition (g = 0) satisfies 

(4) Ilu(, t) 11 < Keot Ilu(, O)II, 

where t0 and K are universal constants. 

Note that II is the usual L2 norm in the half-space. For the solution 
of inhomogeneous equations, one can obtain estimates by Duhamel's principle. 
The above definition is the most natural way to define stability for hyperbolic 
Cauchy problems. 

Now we start considering the numerical solution of the IBV problem (1)- 
(3) by finite difference methods. We introduce a mesh of size h = Ax > 0 
and k = At > 0 in the quarter-plane and, using the notation un u(vh, nk) , 
approximate the equations by a consistent one-step scheme of the form 

un+1 = Qoun +kF, v = 1, 2, .... 

(5) Eu=pi 
( ) ~~~QO= s AjEj 5 EUV = uv+i 

j=-r 

where the m x m matrices Aj are polynomials in A and kB, and the m-vector 

]Pv(t) is a smooth function of F and its derivatives. The initial condition for 
(5) is 

(6) uV = fv := f(hv), zv = 1, 2. 

In addition to the physical boundary condition (3), there are usually numerical 
boundary conditions required in (5). The boundary conditions, physical or 
numerical, can be put together as 

q 

(7) unt CjutEjunl+ gn5l ,u=-r+l1,-r+2 , ... ., O , 
j=1 

where Cj1 are constant matrices. 
The methods of lines, as the major techniques to generate high-order schemes, 

deserve particular attention. These techniques simply couple the spatial 
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discretization with numerical ODE schemes for time stepping. Let u,(t) 
u(vh, t); we approximate (1) by a consistent semidiscrete scheme of the form 

duv(t) = Quv(t) + Fv(t), v = 1, 2 , ... . dt 
(8) p 

Q= ZAjEi, 
j=-r 

where Aj are linear functions of A and B. The initial condition follows 
naturally from (2), i.e, 

(9) uv(0) = fv := f(vh), zv = 1, 2 . 

Boundary conditions, both physical and artificial, are implemented as 
q 

(10) U/u.-+1-+ 2,..0. (10) u,l(t) = Cj,l Ei u,m(t) + gm l(t) ,u = -r +1 r+2 ,0 
j=1 

This system of ordinary differential equations is then solved by standard nu- 
merical methods for ODEs. Inevitably, the well-posedness of the ODE system 
must be dealt with before one proceeds to its numerical solution. 

For the fully discretized and semidiscretized problems, their formal solutions 
always exist. Thus, stability is the only concern. In this paper, we will consider 
the semigroup stability for the discretized problems. That is, putting F 0 
and g = 0, we discuss the conditions under which (4) will hold, with the L2 
norm being replaced by its discrete version. 

In the subsequent sections we will show that for semidiscrete approxima- 
tions and one-step fully discretized approximations to the IBV problem (1)- 
(3), Kreiss' condition, the sufficient and necessary condition for GKS stability 
[4], is a sufficient condition for the semigroup stability (or 12 stability). This 
result disperses the long-standing mist over the relation between the semigroup 
stability and the GKS stability for the discretized problems. For semidiscrete 
approximations, this paper offers a satisfactory answer to the quest for a the- 
ory of semigroup stability [3]. For fully discretized approximations, our results 
supersede and generalize the other two classical theories by Kreiss [6, 7] and 
Osher [13]. 

Before we finish this section, we introduce some notations. We denote the 
solution space of the IBV problem (5)-(7) and (8)-(10) by 12,m(1, oX), which 
is defined by 

l2sm(-M, N) = {u = {uj}NM, Uj E C I IIU|I-M,N < XO}. 

The norm comes from the associated inner product 
N 

(U, V)>M,N = Zujvjh. 
-M 

Thus, 
11U11_M,N = (U, U)-M,N. 

For the sake of convenience, the indices of the norm and inner product of 
12,m(1, Xc) will be omitted. We write 12 (-M, N) for 12, 1 (-M, N) . 
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2. SEMIDISCRETE APPROXIMATIONS 

2.1. Prerequisites. For (8)-(10) to be stable in the semigroup sense, it is neces- 
sary that (8) be semigroup stable for the Cauchy problem. In other words, we 
will only be interested in those spatial discretizations which satisfy 

Assumption 2.1. The operator Q for the Cauchy problem of the semidiscrete 
equations (8) is semibounded, i.e, there exists a real constant tjo such that 

(u, Qu)_,o + (Qu, u)_ < 2to(u, u 

An immediate consequence of semiboundedness of Q is that, when F = 0, 
the solution of (8) satisfies 

11u(t)J1l-o, ,co < Ceq0 jju(O)jj, -o, O, 

Our theory will build upon the classical GKS stability theory [15]. Hence, 
a brief description of the main results of the GKS theory will be given below. 
The GKS stability is defined by 

Definition 2.1. The discrete problem (8)-(10) is stable if for tj > tjo the solution 
of the problem with homogeneous initial value (f = 0) satisfies 

J (IU(0O t)12 + (_ - o)IIu(., t)jj2)e-2Qtdt 

<Kj (IgI2s + IIF(. t)112)e-26tdt, 

where 60, K are universal constants. 

The terms with index W are boundary norms defined by 

0 m 

(12) IuIZ = j lujI, luji = Ej uIU. 
j=-r+l i=l 

The necessary and sufficient condition for GKS stability is determined by an 
eigenvalue problem, which is obtained by taking the Laplace transform of the 
homogenized equations of (8)-(10): 

suv = QUV Re(s)> 0, vo= 1,2, ....5 

(13) ~~~~~q 
(13) ~~upt = 

LCujju+j, ,u = r 1, -r +2, . ............... , 0,5 
j=1 

where 

ui(x, s) = J estu(x, t)dt, Re(s) > 0. 

The eigenvalues and generalized eigenvalues of ( 13) are defined below. 

Definition 2.2. Let B = 0 and Re(s) > 0. Then s is called an eigenvalue if 

1. there exists a nontrivial solution u to (13); 
2. IiUII < o for Re(s) > 0. 

We call s a generalized eigenvalue if it satisfies condition 1 and 
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2'. hlull = 00. Furthermore, Uj(s) = limo, ii(0) with Re(6) > 0, and i(0) 
satisfies (6I - Q)ui(6) = 0. 

We can now state 

Theorem 2.1 (Strikwerda [15]). The approximation (8)-(10) is GKS stable if 
and only if (13) has no eigenvalue nor generalized eigenvalue on the half-plane 
Re(s) > 0. 

The eigenvalue condition in the above theorem is usually referred to as the 
Kreiss' condition. Sometimes, it is more convenient to use the following inter- 
pretation of the Kreiss' condition [4, 15]. 

Lemma 2.1. For the semidiscrete approximation (8)-(10), Kreiss' condition is 
equivalent to: when F = 0 and f = 0, there holds 

(14) l~~~ujl 9 _qll j > -r + 1, 

where Kj is a constant depending on j only. 

There is an additional assumption in the GKS theory which has to be included 
in this paper as well. Note that we have found no semidiscrete approximation 
which violates this assumption. 

Assumption 2.2. The basic scheme (8) is either dissipative or nondissipative, 
i.e, the roots of the characteristic equation 

p 
(15) det I sI- Q(i4) I=0, where Q(i4)= ZAj e ij, 

j=-r 

satisfy either 
Re(s)<O, 0<141 <n, 

or 
Re(s)=O, 141<7r. 

Finally, in this section we claim that it suffices to discuss the stability issues 
for a scalar problem. This is based on the fact that semigroup stability is sta- 
ble against lower-order perturbations. The exact meaning of this statement is 
illustrated in the following 

Lemma 2.2 [11]. Suppose the solution of the infinite system of ordinary differen- 
tial equations 

du 
d=Qu 

satisfies the energy estimate 

IIu(t)II ? Ke1Otjju(0)jj. 

Let H be any bounded linear operator with IIHII < fi. Then the solution of the 
perturbed system 

dw 
= (Q+ H)w dt 

satisfies 
jjw(t)jj < Ke1tjjw(, 0)11, y = to + Kfl. 
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The above lemma tells us that lower-order terms will not affect the stability 
property of an ODE system. Thus, they can be neglected for the purpose of 
stability discussions. Once all lower-order terms are ignored, the equations be- 
come decoupled (except in the boundary conditions). Under this circumstance, 
all our discussions and assertions for a single scalar equation are formally the 
same as those for a system of equations. For the sake of simplicity, we will 
proceed with a single equation in the subsequent sections, and indicate results 
for a system of equations accordingly. 

2.2. Kreiss' condition and semigroup stability. As we have previously explained, 
we only need to consider the scalar problem 

(duj (t) 
(16) I dt jQu(t), = 1, 2,. 

(16) ~~~~j(O j 
Lguo(t) = 0, 

where 
1P 

Q= hZa,PEJ, with a-r, 0, ap 0, 
j=-r 

is the difference approximation of a . The operator W represents a set of 
boundary conditions of the form 

q 

Uu (t) = ,lj ,ByH+j , -r + I < ,u < O, 
j=1 

which make Q well defined in 12(1, xc). 
Our fundamental technique here is to construct a set of special boundary 

conditions for our semidiscrete equation such that its solution at every line 
x = can be bounded in terms of the initial values: 

j e-2QttIu (t) 12dt < cjIIu(0) 112, j = 1, 2, ... 5 

where cj depends on j only. We then subtract this auxiliary problem from the 
original one (8)-(10). In this way, the original problem with inhomogeneous 
initial data is reduced to the problem with inhomogeneous boundary conditions 
but homogeneous initial data. Then, Lemma 2.1 and the energy estimates will 
lead to our results. This approach had been suggested by Kreiss [9] and Gustafs- 
son [3]. Kreiss constructed such special boundary conditions for a particular 
problem [9]. 

Recalling Assumption 2.1, we know that for any u E 12(_-x, xc), 

Re(uF Qu)_romthi < s,(u, u)weO,hv 

From this, we have 
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Theorem 2.2. There exists a boundary operator Sb such that for all U E 1 2(1, xc) 
satisfying %4ouo(t) = 0, the following inequality holds: 

r 

j=-r+l 

where c > 0 is a constant. 
Proof. By writing the boundary terms, which are not yet determined, as a single 
vector ub e 12(-_, xc), 

( b(t)) uj(t) for -r + 1 < j < O, 
\u\))J-0 otherwise , 

and introducing an injection I: 12(1, Xc) 12 2(-_o, Xc): 

(Iu)j{j = j 1, 2, ... 

we can rewrite the inner products in 12(1, Xo) by those in 12(_oo, oX): 

(u, Qu) = (Iu, Q(Iu + ub)) _O, 0 
= (Iu, QIu),0, C0 + (Iu, Qub) _ ,o0. 

Then we have, after taking the real part of each term, 

Re(u, Qu) < tjo(u, u) + Re(Iu, Qub) _ , 0 

= tio(u, u) + Re(u, Qub) I,r 

= tjo(u, u) + Re{U*QiUb}, 

where 
U = (Ul, U2 , ... - Ur)T, 

Ub = (U-r+l , U-r+2, ...5 , Uo)T, 

and Qi is the r x r nonsingular triangular matrix 

a-r a-r+1 a-r+2 ... a2 a-1 
0 a-r a-r+1 a-r+2 a-2 
0 0 a-r a-r+ * a-3 

Qi 

0 0 0 0 0 a-r 

Hence, if we choose 

(18) U -Q- U, 

then we have 
r 

Re(u, Qu) < tjo(u, u) -Z I ujI2, 
j=1 
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or 
0 

Re(u, Qu) < tjo(u, u) - a2 (1 E jujI2, 
j=-r+l 

where a, (Qj) is the smallest singular value of Qi . Combining the above two 
inequalities, we obtain (17). The boundary operator corresponding to (18) is 
the required operator S70. o 

With the special boundary operator W , the solution of (16) satisfies 

t r 

(19) e-2jotIIU(t)jj2 + Cf E e-2to Iuj12dT = IIu(O)112. 
?j=-r+l 

If we introduce the notation 

(uj, uj) = je-2ot I uj(t)12dt, 

then (19) yields 

(u1j ,uj) < const llu(0)112, j =-r + 1, . . ., r. 

Next we will show that with this special boundary operator q, we can 
obtain estimates for all uj . Considering uj, j = 1, ... , r, as known, we treat 

uj, j = r + 1, .. ., x, as the solution of the following system: 

duj (t)=Qu t 
{ dt =Qu1(t) j=r+ 1, r+2, 

Uj (0) =f , 
u,, 1 < ,u < r, known, 

and try to estimate uj j = r + 1, ... , 2r . For this purpose, we split uj(t), j > 
r + 1 , into 

uj(t) =vj(t)+(uj(t)-vj(t)), j=r+ 1, r+2, ... 

where vj(t), j > r + 1, satisfies 

{ dt j = r + 1, r + 2, .... 

Vj1(0) =fi, 

RoVr = 0, 

and wj(t) := u1(t) - vj(t), j > r + 1 , satisfies 

dwji(t).=.Qwj(t) 

(20) {dt ( =r+ 1, r+2, .... ( ) ) ~wj(O) = O, 

tWY = up - VI, 1 < < r 

From Theorem 2.2 and (19), we have 

(Vj, Vj) < IIu(O)112+1 oo < IIu(O)112, i = r + 1, ... , 2r. 
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Thus, we only need to estimate wj, j = r + 1, ... , 2r. Taking the Laplace 
transform of (20) for s = il + iX with tj > t, we have 

(21) fswz =Qwtj, j=r+1,r+2, ..., 

Its corresponding eigenvalue problem is 

(22) sw4i=Qw4j, j=r+1,r+2,..., 

(23) w p =05 ,u= 1, ... , r. 

The characteristic equation of (22) is 

p 

(24) sh = E ajKj. 
j=-r 

Its roots are continuous functions of s := sh. Let Ka Ka (S), 1 < a < 1 
be those roots of (24) lying inside the unit circle when Re(s) > 0, and let 
ma = ma(g) denote the multiplicity of Ka(S). The general solution of (22) in 
12(1, ) is given by 

I ma-i 

wj = Z CagPafl(j)Kj, 
a=1 fl=O 

where Paf (j) are arbitrary polynomials in j with degree exactly equal to ,8, 
and ca, are parameters determined by the boundary conditions (23), which 
now read 

I ma-i 

(25) E ECag Pa (p) K' = 0, 5 = 1, ... , r. 
a=1 f,=O 

Note that the number of these roots is equal to the number of boundary condi- 
tions, i.e., 

m 

ZmaM = r. 
a=1 

Thus, the number of the parameters ca, is exactly equal to the number of 
equations in (25). We will show that the only solution of (22), (23) is the 
trivial solution. This will be done using a technique introduced by Goldberg 
and Tadmor [2]. 

Lemma 2.3. The eigenvalue problem (22), (23) satisfies the Kreiss condition. 

Proof. We make a special selection of Pafi: 

Pal(U) = K-1-fifl! - 1). 

Then (25) becomes 

E E f, IO - a 
a=1 ,B=O 
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that is, with v = u - 1, 

1 ma-i aOKv 

(26) Ea tca, = 05 v =0O, 1, . .. ,r-1 
a=1 fi=0 9Ka 

The coefficient matrix of the above system is 

J = [B(K1, mI), ... ,B(Kl, ml)], 

where, for a= 1,... ,1, 

1'1 ('1(' 1) 

K -2 9 K r-i 
_____I (K r-i2~ 

B(ka,5 Ma 
' ' &,cma- 

(Kr-2) ~~~~~K=Ka 
ma 5Cr)mai rT) 

Let c = (ci, c2, ..., Cr)T be a vector such that 

JTC = O. 

That is, 

{ cvO K 0 <} =, Of < ?ma-1, < a < 1, 
K=Ka 

or 

OK fl- ECvK =0, ?< - Ma-1, 1 <a<l. 
__V= K=Ka 

From the above relations we conclude that the polynomial 
r-1 

P(K) = Cp K/1 
/=o 

has r roots. Since P(K) is of degree r - 1, this means P(K) _ 0. So, we 
have cv = 0, v = 1, . .. , r - 1 , which implies that J is nonsingular. Thus the 
system (26) has no nontrivial solution and the lemma is proved. o 

According to Lemma 2.1, we can estimate the solution of (21) in terms of 
the boundary data, 

r 

IwjI < const ZlItbi, j = r + 1, r + 2 . 
=1 

Hence, for j = r + 1,.. ,2r, 
r 

I&jl ? lWjl + lV'jl constE(IwtiI + lVjl). 
i=1 

With Parseval's equality, these inequalities lead to the desired estimates 

(Uj, Uj) < cjIIu(O)112, j = r + 1, ... , 2r. 
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The approach used to derive the estimates for (uj, uj), j = r + 1, ..., 2r, 
can be used inductively to derive the estimates for all (uj, Uj). Hence, we 
arrive at 

Lemma 2.4. For scheme (16) with special boundary operator W, we have 

(Uj, Uj) < CjIIU(0)112, j > 1, 

where cj depends on i only. 

Now we can formulate our major result about the semigroup stability of ( 16) 
in terms of the eigenvalue problem: 

(27) suj= -Q&. > 1, 

Theorem 2.3. If Q is semibounded for the Cauchy problem and the eigenvalue 
problem (27) satisfies the Kreiss condition, then the IBV problem (16) is stable 
in the semigroup sense. 
Proof. Let v denote the solution of 

dvQ(t)= Qj(t) , 

(28) Jdtj 52..5 
(28) ) ~~~vj(O) =fj , 

V6ovo(t) = 0. 

From Lemma 2.4 we have 

(Vj, Vj) < CjIIU(0)112, j > 1. 

Let w := u - v . It satisfies 

(d wj(t) = Qw1(t),5 
(29) Jdt 15 25 - O w1(O) = 0, 

IWwo(t) = -S7vo(t). 

Taking the Laplace transform of the above equation, we have 

3stDj = QDj, ?> 1, 
(30) j'g =. 

The Kreiss condition implies that the solution at the boundary can be estimated 
in terms of the data. Let p = max{q, r}. Then there is a constant cp such 
that 

p p 
w 1 

1% - E 1wj2 < Cp I 
-Vj12. 

j=-r+l j=-r+l 

Hence, 

00 00 P 

i;e- 2??t'IW (t) 12 dt < cp 
- 

e2??' 
t I Vj(t)12 d t < const IIu(0)112. 

Because 
d(w , w) = 2(w, Qw) < 21o(w, w) + const Iw12, dt 
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we have 
IIW(t)112 < const e2,7?tjju(0)jj2. 

This leads immediately to 

11u(t)JI < 1Iv(t)JI + 11w(t)JI < conste?otllu(O)11. 

The result is thus proved. o 

The corresponding result for a system of equations is 

Theorem 2.4. If Q is semibounded for the Cauchy problem, then the IBVprob- 
lem (8)-(10) is stable in the semigroup sense if the Kreiss condition is satisfied. 

3. ONE-STEP FULLY DISCRETIZED APPROXIMATIONS 

3.1. Prerequisites. Consider the stability of the fully discretized problem (5)- 
(7). It is natural to require that (5) be stable in the semigroup sense for the pure 
Cauchy problem, i.e., we need 

Assumption 3.1. For the one-step scheme (5), there is a CFL number Ao > 0 
such that when 0 < A < Ao, the solution of the corresponding Cauchy problem 
with F = 0 satisfies 

(31) (u', u')_o, Oo < e2t (u0, u?) ,,o 

for some real number t0. 

Remark. For multistep schemes we usually do not have (31). 
We will need some results of the GKS theory. We begin with an eigenvalue 

problem which is obtained by taking the Laplace transform of the homogenized 
equations of (5)-(7): 

(32) ZUV1= Qoii , z =esk, v = 1, 2, ... 
q 

(33) UA = ,Bj#UA+ ~j, u = -r+1 r+ 2, ... ., 0. 
j=l 

The eigenvalues and generalized eigenvalues are defined by 

Definition 3.1. Let B = 0 and Izi I 1 . Then z is called an eigenvalue if 

1. there is a nontrivial solution ui to (32), (33); 
2. IIUII < oo for lzl > 1. 

We call z a generalized eigenvalue if it satisfies condition 1 and 

2'. U1 = 00. Furthermore, u'v(z) = limo z,Io1> &v(0), and uv(0) satisfies 
(OI- Qo)fi(0) = 0. 

With these definitions, we can state the condition for GKS stability [4] of 
(5)-(7). Note that the temporal integration in Definition 2.1 now implies a 
summation: 

roo 00 

J w (t)dt =E w (nk)k. 
n=O 
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Theorem 3.1 (Gustafsson, Kreiss and Sundstr6m). The approximation (5)-(7) 
is GKS stable if and only if the eigenvalue problem (32), (33) has no eigenvalues 
nor generalized eigenvalues for Izj I 1 . 

With boundary norms ( 12), the above theorem can be restated as 

Lemma 3.1 (Gustafsson, Kreiss and Sundstrom). For discrete approximations 
(5)-(7), Kreiss' condition is equivalent to: when F = 0, f = 0, then 

-(34) luA 1< Kj lgl_q j >! -r + 1, 

where Kj is a constant depending on j only. 

Similarly to the semidiscrete case, the following additional assumption is 
needed. Again, among the schemes in use, we have found no violation of this 
assumption. 

Assumption 3.2. The basic scheme (5) is either dissipative or nondissipative, 
i.e, the roots of the characteristic equation 

s p 

(35) det zI - 'J Q (i4)zGk =0, where Qe(i ) = Aeij 
a=O j=-r 

satisfy either 

or 

lZ(O)j 7 ,14 . 

For the same reasons as in the continuous and semidiscrete problems, we 
realize that we only need to discuss the scalar problem without lower-order 
terms. The same results for a system of equations with lower-order terms will 
follow accordingly. 

3.2. Kreiss' condition and semigroup stability. Consider the following fully dis- 
crete scheme: 

(uj1 Qou, O?n?< x, < ?? 
(36) u5 = fj_ 

Rwun = 05 

where 

Qo=I+kQ, Q=h LajEj, a-r$O4ap$O, 
j=-r 

and aj are polynomials in A = k/h. The boundary operator R represents a 
set of functions 

q 

u,=Zflj,u,+j, -r+l<? <O, 
j=1 

which make Qo well defined in the half-space. 
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According to Assumption 3.1, the solution of the corresponding Cauchy prob- 
lem of (36) satisfies, for 0 < A < Ao, 

Wu, < eO,O _ in e u0 u )_0010 

Similarly to the semidiscrete problem, we define 
00 

(u1, u1) = Ze-2ionkIUi12k. 
n=1 

There exists an analogue of Theorem 2.2 for fully discrete schemes: 

Theorem 3.2. There exists a special boundary operator 0b such that the solution 
of (36) satisfies 

(37) (u, up) < cu(u?, u?), -r + I < ,u < 1 

where cu > 0 depends on ,u only. 
Proof. In addition to the injection operator I, we define a projection operator 
P: 12(_-oo, oc) _> 12(-oo, oo) by 

(Pu) = {Ou1j j = 1, 2, .... 
(Pu)j 0 

j <0. 

We write the boundary terms as a vector un E 12(_oo, cc): 

(f\ uJ, -r+1? j?<0, 
( b)j {0, otherwise. 

The energy can be estimated as follows: 

(un+l, un+l) = (Qoun, Qoun) 

= (PQo(Iun + un), PQo(Iun + un))_00,00 

= (PQoIun, PQoIun) _>0,O + 2Re(PQOIun, PQou>n)_00, O 

+ (PQOun , PQOu>n)_oo,o 

< e2,?k (un , un) + 2 Re(QoIun, Qoun) 1,r+(Qoun Qoun) 1,r 

Using the relation 

(QOJun)j = (un+ - QOun)j . < j < r, 

we obtain a simpler inequality, 

(un+l, un+l) < e2,ok(un, un) + 2Re(un+1, Qoun)ir 

(38) - e2iok (un , un) + 2k Re(un+ 1 Qun)l,r 

We now choose the following special boundary conditions: 

un=0, -r+2<,u<0, 
(39) u9+ a~~1 un -+ =-ar1uln+1. 

Then, (38) is turned into 

(40) (un+l, ufn+l) + 2la-runr+iI2k < e2'1ok(un, un). 
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Note that (39) implies 

-n u 10+2 oaiu7+1 
Ur+l- (I +l)a_r 

Multiply both sides of (40) by e-2?o(n+l)k and sum up the inequality for n 
from 1 to +00 to obtain 

2a r(U-r+l, U-r+l) = (U1, U1) < (U?, u?). 

Naturally, 
(u, u) = U O,0 -r + 2 < ,u< O. 

Thus, we get the desired estimates for (u,, u,), ,up = -r + 1, ... , 0. We affili- 
ate the set of boundary conditions (39) with the operator S7o. o 

Remark. There is more than one way to choose the special boundary operator. 
The above boundary operator has the advantage that 

((Qoubn)j . (Qoubn)j), j = 1 ... , r, 

are bounded independently of A. This fact is used in a forthcoming paper to 
discuss the estimates when A -+ 0. 

The boundary operator S70 gives us the estimate of ul and allows us to 
proceed to the estimates of uj for j > 2. Consider the following problem: 

{ U+ = Q0ou 0 < n < o-2,3, 

1]~~~~~ ~~~~~ =j 
2 5 3 

- . 

u n= unV -r+2 < v <1. 

We split u' , j > 2, into 

(41) ujn = vjn + (2n _ vn ) j =25 35 ... 

where v7 , j > 2, is the solution of 

{ v7+1Qov7, 0?n<oo j=2,3,. 

vovnz = O, -r0+2 < v < 1, 

and w :=un - v7, j > 2, satisfies 

wn - Qow j 

wn = un- vn -r+2 <, < 1. 

From Theorem 3.2, we have 

(v 9, VP) < C#(U0, UO), -r+2 ? < < 2. 

The estimates of (w,9, w), ,u > 2, will then rely on the GKS theory. Denoting 
the Laplace transforms of the step functions uj, vj, and wj by Uj, Vj, and 
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Wjb, respectively, we have 

fztj =QotDj j =2, 3,... (42) ~ z, v -r+2,u? 1, 

where z = esk. By the same arguments as those used in showing Lemma 2.3, 
we can prove 

Lemma 3.2. The eigenvalue problem corresponding to (42) satisfies the Kreiss 
condition. 

Thus, by Lemma 3.1, we get 

(wj, wj) < const E ((u,i, u,) + (v. , v,)) < const(u?, uo), j > 2 
-r+2 

and therefore 

(u2, u2) < const((v2, v2) + (w2, w2)) < const(u?, uO). 

Using the same approach as that for the estimate of u2, we can get estimates 
for uj, j > 3. Hence we obtain 

Lemma 3.3. For equation (36) with the special boundary operator W, we have 

(43) (uj, uj) < cj(u, u0), ?j> 1, 

where cj depends on i only. 

For (36) with general boundary conditions, we split its solution into 

uq =v7+(u7-v7), j=1,2, ... , 

where v7, j > 1, is the solution of (36) with the special boundary condition 
WovOn = O, and wj := uq - v, j > 1, satisfies 

wj+1=-2Qow, O<n<oj12 

~WwOn = -Wvon 

Knowing that 

(44) (vj, vj) < cjc(u, u?), 1j> 1, 
we now prove 

Theorem 3.3. Under Assumption 3.1, the IBV problem (36) is stable in the semi- 
group sense if the Kreiss condition is satisfied. 
Proof. From (38), we have 

e-2t1o(n+1)k(wn+1 wfn+l) 

< e-2ilonk(wn wn) + 2e-2to(n+l)k(Wn+l , Qowbn)1,r 

/p O 

? e 21?nk (wn, wn) + conste-2Qo(n+l)k (Iwn+112+ E 71w2 k) 
ij=l j=-r+l 
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where p = max{q, r}. If the Kreiss condition holds, then by Lemma 3.1 and 
Lemma 3.3, we have 

p 

(Wjo, Wj) < constZ(vi, vi) < const(u?, u?), 1 < j <p. 
i=l1 

Hence, 
(W', w') < conste2nonk(UO u0). 

The bound for un comes from the triangle inequality 

i cune t < llvnll + llInll < const e2,onkIIu011. 

This completes the proof. a 

We finish this paper by stating the corresponding result for a system of equa- 
tions. 

Theorem 3.4. Under Assumption 3.1, the IBV problem (5)-(7) is stable in the 
semigroup sense if the Kreiss condition is satisfied. 

Remark. The results we have for one-dimensional hyperbolic equations can be 
generalized to multidimensional hyperbolic equations with symmetric coeffi- 
cient matrices. It can be seen that, with Michelson's version [12] of the GKS 
theory for the discretized problems in multidimensional space, one can derive 
the corresponding results along approaches similar to those for one-dimensional 
problems. 
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